Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions.

نویسندگان

  • Sean Quirin
  • Sri Rama Prasanna Pavani
  • Rafael Piestun
چکیده

Photo-activation localization microscopy is a far-field superresolution imaging technique based on the localization of single molecules with subdiffraction limit precision. Known under acronyms such as PALM (photo-activated localization microscopy) or STORM (stochastic optical reconstruction microscopy), these techniques achieve superresolution by allowing only a sparse, random set of molecules to emit light at any given time and subsequently localizing each molecule with great precision. Recently, such techniques have been extended to three dimensions, opening up unprecedented possibilities to explore the structure and function of cells. Interestingly, proper engineering of the three-dimensional (3D) point spread function (PSF) through additional optics has been demonstrated to theoretically improve 3D position estimation and ultimately resolution. In this paper, an optimal 3D single-molecule localization estimator is presented in a general framework for noisy, aberrated and/or engineered PSF imaging. To find the position of each molecule, a phase-retrieval enabled maximum-likelihood estimator is implemented. This estimator is shown to be efficient, meaning it reaches the fundamental Cramer-Rao lower bound of x, y, and z localization precision. Experimental application of the phase-retrieval enabled maximum-likelihood estimator using a particular engineered PSF microscope demonstrates unmatched low-photon-count 3D wide-field single-molecule localization performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy.

The localization of single fluorescent molecules enables the imaging of molecular structure and dynamics with subdiffraction precision and can be extended to three dimensions using point spread function (PSF) engineering. However, the nanoscale accuracy of localization throughout a 3D single-molecule microscope's field of view has not yet been rigorously examined. By using regularly spaced subd...

متن کامل

Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus.

Recently, single-molecule imaging and photocontrol have enabled superresolution optical microscopy of cellular structures beyond Abbe's diffraction limit, extending the frontier of noninvasive imaging of structures within living cells. However, live-cell superresolution imaging has been challenged by the need to image three-dimensional (3D) structures relative to their biological context, such ...

متن کامل

Unified resolution bounds for conventional and stochastic localization fluorescence microscopy.

Superresolution microscopy enables imaging in the optical far field with ~20 nm-scale resolution. However, classical concepts of resolution using point-spread and modulation-transfer functions fail to describe the physical limits of superresolution techniques based on stochastic localization of single emitters. Prior treatments of stochastic localization microscopy have defined how accurately a...

متن کامل

3D superresolution microscopy by supercritical angle detection.

We present a fundamentally new approach to 3D superresolution microscopy based on the principle of surface-generated fluorescence. This near-field fluorescence is strongly dependent on the distance of fluorophores from the coverslip and can therefore be used to estimate their axial positions. We established a robust and simple implementation of supercritical angle fluorescence detection for sin...

متن کامل

Extracting microtubule networks from superresolution single-molecule localization microscopy data

Microtubule filaments form ubiquitous networks that specify spatial organization in cells. However, quantitative analysis of microtubule networks is hampered by their complex architecture, limiting insights into the interplay between their organization and cellular functions. Although superresolution microscopy has greatly facilitated high-resolution imaging of microtubule filaments, extraction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 3  شماره 

صفحات  -

تاریخ انتشار 2012